
•Manual provisioning of
servers

•Manual configuration of
application and security

•Basic availability monitoring
for application and
infrastructure

•Manual processes for
managing source code,
deployments and
orchestration

•Merges are infrequent and
difficult

•Test data creation is ad hoc
and resource intensive

•Manual reporting of process
development and operations
metrics via ad hoc tools (e.g.
excel, etc.)

•Manual test case creation
•Manually documented
requirements/acceptance
criteria

•Manual test execution for all
phases

•Manualresults logging, defect
entry into test management
tool, spreadsheets, etc

•Change management
requests and deployment
approval processes are
manua.

•Development
communications are ad hoc;
no centralized driver

The Enterprise Automation Advancement Model (EAAM) and survey are intended to be a lightweight, self-diagnostic toolkit to aid application development teams on their journey towards continuous delivery and enable them to:
• measure progress, via a bias-free mechanism, against all facets of automation advancement
• drive 2016 automation planning and activity prioritization based on leading industry practices
• identify additional opportunities to expand and accelerate automation capabilities
The EAAM is unique in that it is:
• Technology Agnostic – applies to all technology platforms (mainframe, midrange/distributed, web, mobile)
• Scalable – scalable to all readiness stages, including areas where teams may be at baseline levels
• Enterprise Relevant – tailored toward enterprise environments, where challenges such as mainframe development and test data management are more prevalent

• Standardized provisioning
• Some scripted configuration
of application and security

•Application logs centralized

•Code organized into modules
or tightly coupled
components with early
branching for releases

•CI server performs builds and
triggers unit tests

•Deployment scripts run
manually

•Test data sets created via ad
hoc dumps from System of
Record (SOR), which may be
out of date

•Application process,
development and operations
metrics are reviewed
manually in enterprise tools

 •Some automated test case
creation with library of test
cases available for re-use

•Limited automated test
execution

•Defects logged automatically
by tools for automated test
scripts and manually for
non-automated testing

•Non-production deployment
approvals automated, some
automated change requests

•Application development
communications process and
cadence defined within each
group

•Automated provisioning ,
may not be tied to a
deployment pipeline

•Automated configuration for
application and security,
under source control

•Application performance
monitoring available

•Application components
loosely-coupled with late
branching

•CI server builds triggered by
commit and trigger
deployments to test
environments

•Release pipeline executes most
functional and non-functional
testing

•Use of test data
management (TDM)
automation to publish data
sets

•Automated build, test and
project metrics available via
dashboards and status
subscriptions

•Acceptance criteria used to
generate test cases

•Automation of most test
phases (i.e. regression,
performance, unit,
functional, etc.)

•Automated defect reporting
triggered by failures of
functional tests

•Automated creation of
change requests for a
deployment; some closed
by automated tools

•Automation engineers in
place

• Resource rotation enables
cross-team learning and
behavior changes

•Provisioning automated as
part of pipeline for
non-production

•Application and security
configuration through
deployment pipeline

•Monitoring tools provide
consolidated
metrics/dashboards and
automatic incident creation

•Distributed/staged builds tied
to pre-tested commits
traceable to story, task or
defect

•Zero-downtime deployments.
•Deployments only allowed
through pipeline

•The ability to pull/utilize test
data sets is fully automated

•Operational analytics shared
across business unit for all
environments

•Automated test case
creation driven from use
cases / stories

•Event triggered automated
testing for all test phases
with coverage/ traceability
reporting

•Some manual UAT.
•Defect metrics used to
analyze code; baselines and
trends drive change

•Change tasks closed
automatically as part of the
deployment pipeline

.Developers responsible for
their code throughout the
deployment pipeline

•Provisioning and
infrastructure configuration
via Infrastructure as
Code/Configuration (IaC) as
part orchestrated release

•Anomaly detection and
organization-wide
distribution of application
metrics

•Application components can
be released independently;
every commit becomes a
potential release candidate

•Automation pipeline is “no
touch” until final production
sign off (if required)

•Testing data loading/reset
controllable by consumers of
services (self-service)

•Dynamic sharing of
consolidated application
metrics radiated across
organization

•Model-based testing to
establish test cases, corner
cases, etc

•Event triggered automated
testing for all test phases,
including all UAT; possible
automated business sign-off

•Majority of defects caught
before code enters test
environment; focus shifts to
defect prevention rather than
detection

•Deployment approvals fully
automated, with the possible
exception of final sign-off
for production

•DevOps model fully
implemented with shared
responsibilities for code in
production

In
fr

as
tr

uc
tu

re
 &

 E
nv

ir
on

m
en

ts
B

ui
ld

 &
D

ep
lo

y
D

at
a

M
an

ag
em

en
t

O
rg

an
iz

at
io

na
l

En
ab

le
m

en
t

Te
st

 &

Q
ua

li
ty

Baseline Beginner Intermediate Advanced Expert

Enterprise Automation Advancement Model (EAAM)

