Enterprise Automation Advancement Model (EAAM)

*Manual provisioning of
servers

*Manual configuration of
application and security

Basic availability monitoring
for application and
infrastructure

*Manual processes for
managing source code,
deployments and
orchestration

*Merges are infrequent and
difficult

*Test data creation is ad hoc
and resource intensive

*Manual reporting of process
development and operations
metrics via ad hoc tools (e.q.
excel, etc.)

*Manual test case creation

*Manually documented
requirements/acceptance
criteria

*Manual test execution for all
phases

*Manualresults logging, defect
entry into test management
tool, spreadsheets, etc

Change management
requests and deployment
approval processes are
manua.

Development
communications are ad hoc;
no centralized driver

« Standardized provisioning

« Some scripted configuration
of application and security

s Application logs centralized

«Code organized into modules
or tightly coupled
components with early
branching for releases

*Cl server performs builds and
triggers unit tests

Deployment scripts run
manually

Test data sets created via ad
hoc dumps from System of
Record (SOR), which may be
out of date

s Application process,
development and operations
metrics are reviewed
manually in enterprise tools

Some automated test case
creation with library of test
cases available for re-use

Limited automated test
execution

Defects logged automatically
by tools for automated test
scripts and manually for
non-automated testing

*Non-production deployment
approvals automated, some
automated change requests

s Application development
communications process and
cadence defined within each

group

s Automated provisioning ,
may not be tied to a
deployment pipeline

* Automated configuration for
application and security,
under source control

s Application performance
monitoring available

sApplication components
loosely-coupled with late
branching

*Cl| server builds triggered by
commit and trigger
deployments to test
environments

*Release pipeline executes most

functional and non-functional
testing

*Use of test data
management (TDM)
automation to publish data
sets

« Automated build, test and
project metrics available via
dashboards and status
subscriptions

s Acceptance criteria used to
generate test cases

s Automation of most test
phases (i.e. regression,
performance, unit,
functional, etc.)

s Automated defect reporting
triggered by failures of
functional tests

s Automated creation of
change requests for a
deployment; some closed
by automated tools

s Automation engineers in
place

* Resource rotation enables
cross-team learning and
behavior changes

*Provisioning automated as
part of pipeline for
non-production

s Application and security
configuration through
deployment pipeline

*Monitoring tools provide
consolidated
metrics/dashboards and
automatic incident creation

*Distributed/staged builds tied
to pre-tested commits
traceable to story, task or
defect

«Zero-downtime deployments.

Deployments only allowed
through pipeline

*The ability to pull/utilize test
data sets is fully automated

*Operational analytics shared
across business unit for all
environments

s Automated test case
creation driven from use
cases / stories

sEvent triggered automated
testing for all test phases
with coverage/ traceability
reporting

*Some manual UAT.

sDefect metrics used to
analyze code; baselines and
trends drive change

*Change tasks closed
automatically as part of the
deployment pipeline

.Developers responsible for
their code throughout the
deployment pipeline

*Provisioning and
infrastructure configuration
via Infrastructure as
Code/Configuration (lIaC) as
part orchestrated release

Anomaly detection and
organization-wide
distribution of application
metrics

s Application components can
be released independently;
every commit becomes a
potential release candidate

s Automation pipeline is “no
touch” until final production
sign off (if required)

*Testing data loading/reset
controllable by consumers of
services (self-service)

*Dynamic sharing of
consolidated application
metrics radiated across
organization

*Model-based testing to
establish test cases, corner
cases, etc

sEvent triggered automated
testing for all test phases,
including all UAT; possible
automated business sign-off

*Majority of defects caught
before code enters test
environment; focus shifts to
defect prevention rather than
detection

Deployment approvals fully
automated, with the possible
exception of final sign-off
for production

*DevOps model fully
implemented with shared
responsibilities for code in
production

The Enterprise Automation Advancement Model (EAAM) and survey are intended to be a lightweight, self-diagnostic toolkit to aid application development teams on their journey towards continuous delivery and enable them to:
. measure progress, via a bias-free mechanism, against all facets of automation advancement

. drive 2016 automation planning and activity prioritization based on leading industry practices

. identify additional opportunities to expand and accelerate automation capabilities

The EAAM is unique in that it is:

. Technology Agnostic - applies to all technology platforms (mainframe, midrange/distributed, web, mobile)
. Scalable - scalable to all readiness stages, including areas where teams may be at baseline levels

. Enterprise Relevant - tailored toward enterprise environments, where challenges such as mainframe development and test data management are more prevalent



